Joshua Bloch ... &

for

Java 9

Effective Java

Third Edition

. ...the Java Platform

Effective Java
Third Edition

This page intentionally left blank

Effective Java
Third Edition

Joshua Bloch

vv Addison-Wesley

Boston ¢ Columbus « Indianapolis « New York « San Francisco « Amsterdam « Cape Town
Dubai * London « Madrid « Milan « Munich ¢ Paris « Montreal Toronto « Delhi « Mexico City
S&@o Paulo « Sydney « Hong Kong ¢ Seoul « Singapore ¢ Taipei ¢ Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for
incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may
include electronic versions; custom cover designs; and content particular to your business, training
goals, marketing focus, or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales @pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2017956176

Copyright © 2018 Pearson Education Inc.
Portions copyright © 2001-2008 Oracle and/or its affiliates.
All Rights Reserved.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, request forms and the appropriate contacts within the
Pearson Education Global Rights & Permissions Department, please visit
www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-468599-1
ISBN-10: 0-13-468599-7

1 17

To my family: Cindy, Tim, and Matt

This page intentionally left blank

Contents

Foreword xi
Preface xiii
Acknowledgments. Xvii
1 Imtroduction 1
2 Creating and Destroying Objects 5

Item 1: Consider static factory methods instead of constructors. .. 5
Item 2: Consider a builder when faced with many constructor

PATAMELETS . . . o vttt e e e e 10

Item 3: Enforce the singleton property with a private constructor
Or AN ENUM LYPE .+« v vt e et e e et e e e e e e 17
Item 4: Enforce noninstantiability with a private constructor 19
Item 5: Prefer dependency injection to hardwiring resources 20
Item 6: Avoid creating unnecessary objects 22
Item 7: Eliminate obsolete object references. 26
Item 8: Avoid finalizers and cleaners 29
Item 9: Prefer try-with-resources to try-finally............ 34
3 Methods Common to All Objects 37
Item 10: Obey the general contract when overriding equals 37
Item 11: Always override hashCode when you override equals .. 50
Item 12: Always override toString............ 55
Item 13: Override clone judiciously. 58
Item 14: Consider implementing Comparable 66
4 Classes and Interfaces............................... 73
Item 15: Minimize the accessibility of classes and members 73
Item 16: In public classes, use accessor methods, not public fields 78
Item 17: Minimize mutability 80

Item 18: Favor composition over inheritance 87

vii

viii

CONTENTS

Item 19: Design and document for inheritance or else prohibitit 93
Item 20: Prefer interfaces to abstract classes 99
Item 21: Design interfaces for posterity 104
Item 22: Use interfaces only to define types. 107
Item 23: Prefer class hierarchies to tagged classes............ 109
Item 24: Favor static member classes over nonstatic 112
Item 25: Limit source files to a single top-level class 115
5 Generics............. ... 117
Item 26: Don’t use raw typesvvi i 117
Item 27: Eliminate unchecked warnings. 123
Item 28: Prefer lists toarrays, 126
Item 29: Favor generic types.ovvvvivn e on... 130
Item 30: Favor generic methods 135
Item 31: Use bounded wildcards to increase API flexibility 139
Item 32: Combine generics and varargs judiciously. 146
Item 33: Consider typesafe heterogeneous containers 151
6 Enums and Annotations 157
Item 34: Use enums instead of int constants. 157
Item 35: Use instance fields instead of ordinals 168
Item 36: Use EnumSet instead of bit fields.................. 169
Item 37: Use EnumMap instead of ordinal indexing. 171
Item 38: Emulate extensible enums with interfaces 176
Item 39: Prefer annotations to naming patterns 180
Item 40: Consistently use the Override annotation. 188
Item 41: Use marker interfaces to define types 191
7 Lambdasand Streams............................. 193
Item 42: Prefer lambdas to anonymous classes 193
Item 43: Prefer method references to lambdas 197
Item 44: Favor the use of standard functional interfaces 199
Item 45: Use streams judiciously 203
Item 46: Prefer side-effect-free functions in streams 210
Item 47: Prefer Collection to Stream as a return type. 216
Item 48: Use caution when making streams parallel 222

CONTENTS

8 Methods 227
Item 49: Check parameters for validity 227
Item 50: Make defensive copies whenneeded 231
Item 51: Design method signatures carefully 236
Item 52: Use overloading judiciously 238
Item 53: Use varargs judiciously 245
Item 54: Return empty collections or arrays, notnulls 247
Item 55: Return optionals judiciously 249
Item 56: Write doc comments for all exposed API elements 254

9 General Programming 261
Item 57: Minimize the scope of local variables............... 261
Item 58: Prefer for-each loops to traditional for loops......... 264
Item 59: Know and use the libraries 267
Item 60: Avoid float and doubTe if exact answers are required . 270
Item 61: Prefer primitive types to boxed primitives 273
Item 62: Avoid strings where other types are more appropriate . . 276
Item 63: Beware the performance of string concatenation 279
Item 64: Refer to objects by their interfaces 280
Item 65: Prefer interfaces to reflection 282
Item 66: Use native methods judiciously. 285
Item 67: Optimize judiciously 286
Item 68: Adhere to generally accepted naming conventions. 289

10Exceptions 293
Item 69: Use exceptions only for exceptional conditions 293
Item 70: Use checked exceptions for recoverable conditions and

runtime exceptions for programming errors 296
Item 71: Avoid unnecessary use of checked exceptions 298
Item 72: Favor the use of standard exceptions. 300
Item 73: Throw exceptions appropriate to the abstraction. 302
Item 74: Document all exceptions thrown by each method. 304
Item 75: Include failure-capture information in detail messages. . 306
Item 76: Strive for failure atomicity 308
Item 77: Don’t ignore exceptions 310

iX

X CONTENTS

11 Concurrencyooiiiiiiiiiiiiieann. 311
Item 78: Synchronize access to shared mutable data 311
Item 79: Avoid excessive synchronization.................. 317
Item 80: Prefer executors, tasks, and streams to threads 323
Item 81: Prefer concurrency utilities to wait and notify...... 325
Item 82: Document thread safety 330
Item 83: Use lazy initialization judiciously 333
Item 84: Don’t depend on the thread scheduler 336

12 Serialization............................ 339
Item 85: Prefer alternatives to Java serialization 339
Item 86: Implement Serializable with great caution 343
Item 87: Consider using a custom serialized form 346
Item 88: Write readObject methods defensively 353
Item 89: For instance control, prefer enum types to

readResolve i 359
Item 90: Consider serialization proxies instead of serialized
INSEANCES . . o oottt e 363

Items Corresponding to Second Edition 367

References............. 371

Index....... 377

Foreword

IF a colleague were to say to you, “Spouse of me this night today manufactures the
unusual meal in a home. You will join?” three things would likely cross your mind:
third, that you had been invited to dinner; second, that English was not your col-
league’s first language; and first, a good deal of puzzlement.

If you have ever studied a second language yourself and then tried to use it
outside the classroom, you know that there are three things you must master: how
the language is structured (grammar), how to name things you want to talk about
(vocabulary), and the customary and effective ways to say everyday things
(usage). Too often only the first two are covered in the classroom, and you find
native speakers constantly suppressing their laughter as you try to make yourself
understood.

It is much the same with a programming language. You need to understand the
core language: is it algorithmic, functional, object-oriented? You need to know the
vocabulary: what data structures, operations, and facilities are provided by the
standard libraries? And you need to be familiar with the customary and effective
ways to structure your code. Books about programming languages often cover
only the first two, or discuss usage only spottily. Maybe that’s because the first
two are in some ways easier to write about. Grammar and vocabulary are proper-
ties of the language alone, but usage is characteristic of a community that uses it.

The Java programming language, for example, is object-oriented with single
inheritance and supports an imperative (statement-oriented) coding style within
each method. The libraries address graphic display support, networking, distrib-
uted computing, and security. But how is the language best put to use in practice?

There is another point. Programs, unlike spoken sentences and unlike most
books and magazines, are likely to be changed over time. It’s typically not enough
to produce code that operates effectively and is readily understood by other per-
sons; one must also organize the code so that it is easy to modify. There may be
ten ways to write code for some task 7. Of those ten ways, seven will be awkward,
inefficient, or puzzling. Of the other three, which is most likely to be similar to the
code needed for the task 7" in next year’s software release?

xi

Xii

FOREWORD

There are numerous books from which you can learn the grammar of the Java
programming language, including The Java™ Programming Language by Arnold,
Gosling, and Holmes, or The Java™ Language Specification by Gosling, Joy, yours
truly, and Bracha. Likewise, there are dozens of books on the libraries and APIs
associated with the Java programming language.

This book addresses your third need: customary and effective usage. Joshua
Bloch has spent years extending, implementing, and using the Java programming
language at Sun Microsystems; he has also read a lot of other people’s code,
including mine. Here he offers good advice, systematically organized, on how to
structure your code so that it works well, so that other people can understand it, so
that future modifications and improvements are less likely to cause headaches—
perhaps, even, so that your programs will be pleasant, elegant, and graceful.

™

Guy L. Steele Jr.
Burlington, Massachusetts
April 2001

Preface

Preface to the Third Edition

IN 1997, when Java was new, James Gosling (the father of Java), described it as a
“blue collar language” that was “pretty simple” [Gosling97]. At about the same time,
Bjarne Stroustrup (the father of C++) described C++ as a “multi-paradigm language”
that “deliberately differs from languages designed to support a single way of writing
programs” [Stroustrup95]. Stroustrup warned:

Much of the relative simplicity of Java is—Ilike for most new languages—
partly an illusion and partly a function of its incompleteness. As time passes,
Java will grow significantly in size and complexity. It will double or triple in
size and grow implementation-dependent extensions or libraries. [Stroustrup]

Now, twenty years later, it’s fair to say that Gosling and Stroustrup were both right.
Java is now large and complex, with multiple abstractions for many things, from
parallel execution, to iteration, to the representation of dates and times.

I still like Java, though my ardor has cooled a bit as the platform has grown.
Given its increased size and complexity, the need for an up-to-date best-practices
guide is all the more critical. With this third edition of Effective Java, I did my
best to provide you with one. I hope this edition continues to satisfy the need,
while staying true to the spirit of the first two editions.

Small is beautiful, but simple ain’t easy.

San Jose, California
November 2017

P.S. I would be remiss if I failed to mention an industry-wide best practice that has
occupied a fair amount of my time lately. Since the birth of our field in the 1950’s,
we have freely reimplemented each others’ APIs. This practice was critical to the
meteoric success of computer technology. I am active in the effort to preserve this
freedom [CompScil7], and I encourage you to join me. It is crucial to the continued
health of our profession that we retain the right to reimplement each others’ APIs.

Xiii

X1V

PREFACE

Preface to the Second Edition

A lot has happened to the Java platform since I wrote the first edition of this book in
2001, and it’s high time for a second edition. The most significant set of changes
was the addition of generics, enum types, annotations, autoboxing, and the for-each
loop in Java 5. A close second was the addition of the new concurrency library,
java.util.concurrent, also released in Java 5. With Gilad Bracha, I had the good
fortune to lead the teams that designed the new language features. I also had the
good fortune to serve on the team that designed and developed the concurrency
library, which was led by Doug Lea.

The other big change in the platform is the widespread adoption of modern
Integrated Development Environments (IDEs), such as Eclipse, IntelliJ IDEA, and
NetBeans, and of static analysis tools, such as FindBugs. While I have not been
involved in these efforts, I’ve benefited from them immensely and learned how
they affect the Java development experience.

In 2004, I moved from Sun to Google, but I've continued my involvement in
the development of the Java platform over the past four years, contributing to the
concurrency and collections APIs through the good offices of Google and the Java
Community Process. I’ve also had the pleasure of using the Java platform to
develop libraries for use within Google. Now I know what it feels like to be a user.

As was the case in 2001 when I wrote the first edition, my primary goal is to
share my experience with you so that you can imitate my successes while avoiding
my failures. The new material continues to make liberal use of real-world exam-
ples from the Java platform libraries.

The first edition succeeded beyond my wildest expectations, and I’ve done my
best to stay true to its spirit while covering all of the new material that was
required to bring the book up to date. It was inevitable that the book would grow,
and grow it did, from fifty-seven items to seventy-eight. Not only did I add
twenty-three items, but I thoroughly revised all the original material and retired a
few items whose better days had passed. In the Appendix, you can see how the
material in this edition relates to the material in the first edition.

In the Preface to the First Edition, I wrote that the Java programming language
and its libraries were immensely conducive to quality and productivity, and a joy
to work with. The changes in releases 5 and 6 have taken a good thing and made it
better. The platform is much bigger now than it was in 2001 and more complex,
but once you learn the patterns and idioms for using the new features, they make
your programs better and your life easier. I hope this edition captures my contin-

PREFACE XV

ued enthusiasm for the platform and helps make your use of the platform and its
new features more effective and enjoyable.

San Jose, California
April 2008

Preface to the First Edition

In 1996 I pulled up stakes and headed west to work for JavaSoft, as it was then
known, because it was clear that that was where the action was. In the intervening
five years I've served as Java platform libraries architect. I've designed, imple-
mented, and maintained many of the libraries and served as a consultant for many
others. Presiding over these libraries as the Java platform matured was a once-in-a-
lifetime opportunity. It is no exaggeration to say that I had the privilege to work with
some of the great software engineers of our generation. In the process, I learned a lot
about the Java programming language—what works, what doesn’t, and how to use
the language and its libraries to best effect.

This book is my attempt to share my experience with you so that you can imi-
tate my successes while avoiding my failures. I borrowed the format from Scott
Meyers’s Effective C++, which consists of fifty items, each conveying one spe-
cific rule for improving your programs and designs. I found the format to be sin-
gularly effective, and I hope you do too.

In many cases, I took the liberty of illustrating the items with real-world
examples from the Java platform libraries. When describing something that could
have been done better, I tried to pick on code that I wrote myself, but occasionally
I pick on something written by a colleague. I sincerely apologize if, despite my
best efforts, I've offended anyone. Negative examples are cited not to cast blame
but in the spirit of cooperation, so that all of us can benefit from the experience of
those who’ve gone before.

While this book is not targeted solely at developers of reusable components, it
is inevitably colored by my experience writing such components over the past two
decades. I naturally think in terms of exported APIs (Application Programming
Interfaces), and I encourage you to do likewise. Even if you aren’t developing
reusable components, thinking in these terms tends to improve the quality of the
software you write. Furthermore, it’s not uncommon to write a reusable compo-

XVi

PREFACE

nent without knowing it: You write something useful, share it with your buddy
across the hall, and before long you have half a dozen users. At this point, you no
longer have the flexibility to change the API at will and are thankful for all the
effort that you put into designing the API when you first wrote the software.

My focus on API design may seem a bit unnatural to devotees of the new
lightweight software development methodologies, such as Extreme Programming.
These methodologies emphasize writing the simplest program that could possibly
work. If you’re using one of these methodologies, you’ll find that a focus on API
design serves you well in the refactoring process. The fundamental goals of refac-
toring are the improvement of system structure and the avoidance of code duplica-
tion. These goals are impossible to achieve in the absence of well-designed APIs
for the components of the system.

No language is perfect, but some are excellent. I have found the Java
programming language and its libraries to be immensely conducive to quality and
productivity, and a joy to work with. I hope this book captures my enthusiasm and
helps make your use of the language more effective and enjoyable.

Cupertino, California
April 2001

Acknowledgments

Acknowledgments for the Third Edition

I thank the readers of the first two editions of this book for giving it such a kind and
enthusiastic reception, for taking its ideas to heart, and for letting me know what a
positive influence it had on them and their work. I thank the many professors who
used the book in their courses, and the many engineering teams that adopted it.

I thank the whole team at Addison-Wesley and Pearson for their kindness, pro-
fessionalism, patience, and grace under extreme pressure. Through it all, my editor
Greg Doench remained unflappable: a fine editor and a perfect gentleman. I’'m
afraid his hair may have turned a bit gray as a result of this project, and I humbly
apologize. My project manager, Julie Nahil, and my project editor, Dana Wilson,
were all I could hope for: diligent, prompt, organized, and friendly. My copy editor,
Kim Wimpsett, was meticulous and tasteful.

I have yet again been blessed with the best team of reviewers imaginable, and
I give my sincerest thanks to each of them. The core team, who reviewed most
every chapter, consisted of Cindy Bloch, Brian Kernighan, Kevin Bourrillion, Joe
Bowbeer, William Chargin, Joe Darcy, Brian Goetz, Tim Halloran, Stuart Marks,
Tim Peierls, and Yoshiki Shibata, Other reviewers included Marcus Biel, Dan
Bloch, Beth Bottos, Martin Buchholz, Michael Diamond, Charlie Garrod, Tom
Hawtin, Doug Lea, Aleksey Shipilév, Lou Wasserman, and Peter Weinberger.
These reviewers made numerous suggestions that led to great improvements in
this book and saved me from many embarrassments.

I give special thanks to William Chargin, Doug Lea, and Tim Peierls, who
served as sounding boards for many of the ideas in this book. William, Doug, and
Tim were unfailingly generous with their time and knowledge.

Finally, I thank my wife, Cindy Bloch, for encouraging me to write, for read-
ing each item in raw form, for writing the index, for helping me with all of the
things that invariably come up when you take on a big project, and for putting up
with me while I wrote.

xvii

XVviil

ACKNOWLEDGMENTS

Acknowledgments for the Second Edition

I thank the readers of the first edition of this book for giving it such a kind and
enthusiastic reception, for taking its ideas to heart, and for letting me know what a
positive influence it had on them and their work. I thank the many professors who
used the book in their courses, and the many engineering teams that adopted it.

I thank the whole team at Addison-Wesley for their kindness, professionalism,
patience, and grace under pressure. Through it all, my editor Greg Doench
remained unflappable: a fine editor and a perfect gentleman. My production man-
ager, Julie Nahil, was everything that a production manager should be: diligent,
prompt, organized, and friendly. My copy editor, Barbara Wood, was meticulous
and tasteful.

I have once again been blessed with the best team of reviewers imaginable,
and I give my sincerest thanks to each of them. The core team, who reviewed
every chapter, consisted of Lexi Baugher, Cindy Bloch, Beth Bottos, Joe Bowbeer,
Brian Goetz, Tim Halloran, Brian Kernighan, Rob Konigsberg, Tim Peierls, Bill
Pugh, Yoshiki Shibata, Peter Stout, Peter Weinberger, and Frank Yellin. Other
reviewers included Pablo Bellver, Dan Bloch, Dan Bornstein, Kevin Bourrillion,
Martin Buchholz, Joe Darcy, Neal Gafter, Laurence Gonsalves, Aaron Green-
house, Barry Hayes, Peter Jones, Angelika Langer, Doug Lea, Bob Lee, Jeremy
Manson, Tom May, Mike McCloskey, Andriy Tereshchenko, and Paul Tyma.
Again, these reviewers made numerous suggestions that led to great improve-
ments in this book and saved me from many embarrassments. And again, any
remaining embarrassments are my responsibility.

I give special thanks to Doug Lea and Tim Peierls, who served as sounding
boards for many of the ideas in this book. Doug and Tim were unfailingly gener-
ous with their time and knowledge.

I thank my manager at Google, Prabha Krishna, for her continued support and
encouragement.

Finally, I thank my wife, Cindy Bloch, for encouraging me to write, for read-
ing each item in raw form, for helping me with Framemaker, for writing the index,
and for putting up with me while I wrote.

ACKNOWLEDGMENTS

Acknowledgments for the First Edition

I thank Patrick Chan for suggesting that I write this book and for pitching the idea to
Lisa Friendly, the series managing editor; Tim Lindholm, the series technical editor;
and Mike Hendrickson, executive editor of Addison-Wesley. I thank Lisa, Tim, and
Mike for encouraging me to pursue the project and for their superhuman patience
and unyielding faith that I would someday write this book.

I thank James Gosling and his original team for giving me something great to
write about, and I thank the many Java platform engineers who followed in
James’s footsteps. In particular, I thank my colleagues in Sun’s Java Platform
Tools and Libraries Group for their insights, their encouragement, and their sup-
port. The team consists of Andrew Bennett, Joe Darcy, Neal Gafter, Iris Garcia,
Konstantin Kladko, Ian Little, Mike McCloskey, and Mark Reinhold. Former
members include Zhenghua Li, Bill Maddox, and Naveen Sanjeeva.

I thank my manager, Andrew Bennett, and my director, Larry Abrahams, for
lending their full and enthusiastic support to this project. I thank Rich Green, the
VP of Engineering at Java Software, for providing an environment where engi-
neers are free to think creatively and to publish their work.

I have been blessed with the best team of reviewers imaginable, and I give my
sincerest thanks to each of them: Andrew Bennett, Cindy Bloch, Dan Bloch, Beth
Bottos, Joe Bowbeer, Gilad Bracha, Mary Campione, Joe Darcy, David Eckhardt,
Joe Fialli, Lisa Friendly, James Gosling, Peter Haggar, David Holmes, Brian
Kernighan, Konstantin Kladko, Doug Lea, Zhenghua Li, Tim Lindholm, Mike
McCloskey, Tim Peierls, Mark Reinhold, Ken Russell, Bill Shannon, Peter Stout,
Phil Wadler, and two anonymous reviewers. They made numerous suggestions
that led to great improvements in this book and saved me from many
embarrassments. Any remaining embarrassments are my responsibility.

Numerous colleagues, inside and outside Sun, participated in technical
discussions that improved the quality of this book. Among others, Ben Gomes,
Steffen Grarup, Peter Kessler, Richard Roda, John Rose, and David Stoutamire
contributed useful insights. A special thanks is due Doug Lea, who served as a
sounding board for many of the ideas in this book. Doug has been unfailingly
generous with his time and his knowledge.

I thank Julie Dinicola, Jacqui Doucette, Mike Hendrickson, Heather Olszyk,
Tracy Russ, and the whole team at Addison-Wesley for their support and profes-
sionalism. Even under an impossibly tight schedule, they were always friendly
and accommodating.

XiX

XX

ACKNOWLEDGMENTS

I thank Guy Steele for writing the Foreword. I am honored that he chose to
participate in this project.

Finally, I thank my wife, Cindy Bloch, for encouraging and occasionally
threatening me to write this book, for reading each item in its raw form, for help-
ing me with Framemaker, for writing the index, and for putting up with me while I
wrote.

CHAPTER 1

Introduction

THIS book is designed to help you make effective use of the Java programming
language and its fundamental libraries: java.lang, java.util, and java.io, and
subpackages such as java.util.concurrent and java.util.function. Other
libraries are discussed from time to time.

This book consists of ninety items, each of which conveys one rule. The rules
capture practices generally held to be beneficial by the best and most experienced
programmers. The items are loosely grouped into eleven chapters, each covering
one broad aspect of software design. The book is not intended to be read from
cover to cover: each item stands on its own, more or less. The items are heavily
cross-referenced so you can easily plot your own course through the book.

Many new features were added to the platform since the last edition of this
book was published. Most of the items in this book use these features in some
way. This table shows you where to go for primary coverage of key features:

Feature Items Release
Lambdas Items 4244 Java 8
Streams Items 4548 Java 8
Optionals Item 55 Java 8
Default methods in interfaces Item 21 Java 8
try-with-resources Item 9 Java7
@SafeVarargs Item 32 Java7

Modules Item 15 Java 9

CHAPTER I INTRODUCTION

Most items are illustrated with program examples. A key feature of this book
is that it contains code examples illustrating many design patterns and idioms.
Where appropriate, they are cross-referenced to the standard reference work in
this area [Gamma95].

Many items contain one or more program examples illustrating some practice
to be avoided. Such examples, sometimes known as antipatterns, are clearly
labeled with a comment such as // Never do this!. In each case, the item
explains why the example is bad and suggests an alternative approach.

This book is not for beginners: it assumes that you are already comfortable
with Java. If you are not, consider one of the many fine introductory texts, such as
Peter Sestoft’s Java Precisely [Sestoft16]. While Effective Java is designed to be
accessible to anyone with a working knowledge of the language, it should provide
food for thought even for advanced programmers.

Most of the rules in this book derive from a few fundamental principles.
Clarity and simplicity are of paramount importance. The user of a component
should never be surprised by its behavior. Components should be as small as
possible but no smaller. (As used in this book, the term component refers to any
reusable software element, from an individual method to a complex framework
consisting of multiple packages.) Code should be reused rather than copied. The
dependencies between components should be kept to a minimum. Errors should
be detected as soon as possible after they are made, ideally at compile time.

While the rules in this book do not apply 100 percent of the time, they do
characterize best programming practices in the great majority of cases. You
should not slavishly follow these rules, but violate them only occasionally and
with good reason. Learning the art of programming, like most other disciplines,
consists of first learning the rules and then learning when to break them.

For the most part, this book is not about performance. It is about writing
programs that are clear, correct, usable, robust, flexible, and maintainable. If you
can do that, it’s usually a relatively simple matter to get the performance you need
(Item 67). Some items do discuss performance concerns, and a few of these items
provide performance numbers. These numbers, which are introduced with the
phrase “On my machine,” should be regarded as approximate at best.

For what it’s worth, my machine is an aging homebuilt 3.5GHz quad-core
Intel Core 17-4770K with 16 gigabytes of DDR3-1866 CL9 RAM, running Azul’s
Zulu 9.0.0.15 release of OpenJDK, atop Microsoft Windows 7 Professional SP1
(64-bit).

CHAPTER I INTRODUCTION

When discussing features of the Java programming language and its libraries,
it is sometimes necessary to refer to specific releases. For convenience, this book
uses nicknames in preference to official release names. This table shows the map-
ping between release names and nicknames:

Official Release Name Nickname
JDK 1.0.x Java 1.0
JDK 1.1.x Java 1.1
Java 2 Platform, Standard Edition, v1.2 Java 2
Java 2 Platform, Standard Edition, v1.3 Java 3
Java 2 Platform, Standard Edition, v1.4 Java 4
Java 2 Platform, Standard Edition, v5.0 Java 5
Java Platform, Standard Edition 6 Java 6
Java Platform, Standard Edition 7 Java7
Java Platform, Standard Edition 8 Java 8
Java Platform, Standard Edition 9 Java 9

The examples are reasonably complete, but favor readability over complete-
ness. They freely use classes from packages java.util and java.io. In order to
compile examples, you may have to add one or more import declarations, or other
such boilerplate. The book’s website, http://joshbloch.com/effectivejava,
contains an expanded version of each example, which you can compile and run.

For the most part, this book uses technical terms as they are defined in The
Java Language Specification, Java SE 8 Edition [JLS]. A few terms deserve
special mention. The language supports four kinds of types: interfaces (including
annotations), classes (including enums), arrays, and primitives. The first three are
known as reference types. Class instances and arrays are objects; primitive values
are not. A class’s members consist of its fields, methods, member classes, and
member interfaces. A method’s signature consists of its name and the types of its
formal parameters; the signature does not include the method’s return type.

This book uses a few terms differently from The Java Language Specification.
Unlike The Java Language Specification, this book uses inheritance as a synonym
for subclassing. Instead of using the term inheritance for interfaces, this book

CHAPTER I INTRODUCTION

simply states that a class implements an interface or that one interface extends
another. To describe the access level that applies when none is specified, this book
uses the traditional package-private instead of the technically correct package
access [JLS, 6.6.1].

This book uses a few technical terms that are not defined in The Java Lan-
guage Specification. The term exported API, or simply API, refers to the classes,
interfaces, constructors, members, and serialized forms by which a programmer
accesses a class, interface, or package. (The term API, which is short for applica-
tion programming interface, is used in preference to the otherwise preferable term
interface to avoid confusion with the language construct of that name.) A
programmer who writes a program that uses an API is referred to as a user of the
API. A class whose implementation uses an API is a client of the APIL.

Classes, interfaces, constructors, members, and serialized forms are collec-
tively known as API elements. An exported API consists of the API elements that
are accessible outside of the package that defines the API. These are the API
elements that any client can use and the author of the API commits to support. Not
coincidentally, they are also the elements for which the Javadoc utility generates
documentation in its default mode of operation. Loosely speaking, the exported
API of a package consists of the public and protected members and constructors
of every public class or interface in the package.

In Java 9, a module system was added to the platform. If a library makes use of
the module system, its exported API is the union of the exported APIs of all the
packages exported by the library’s module declaration.

CHAPTER 2

Creating and Destroying Objects

THIS chapter concerns creating and destroying objects: when and how to create
them, when and how to avoid creating them, how to ensure they are destroyed in a
timely manner, and how to manage any cleanup actions that must precede their
destruction.

Item 1: Consider static factory methods instead of constructors

The traditional way for a class to allow a client to obtain an instance is to provide
a public constructor. There is another technique that should be a part of every
programmer’s toolkit. A class can provide a public static factory method, which is
simply a static method that returns an instance of the class. Here’s a simple
example from Boolean (the boxed primitive class for boolean). This method
translates a boolean primitive value into a Boolean object reference:

public static Boolean valueOf(boolean b) {
return b ? Boolean.TRUE : Boolean.FALSE;
}

Note that a static factory method is not the same as the Factory Method pattern
from Design Patterns [Gamma95]. The static factory method described in this
item has no direct equivalent in Design Patterns.

A class can provide its clients with static factory methods instead of, or in
addition to, public constructors. Providing a static factory method instead of a
public constructor has both advantages and disadvantages.

One advantage of static factory methods is that, unlike constructors, they
have names. If the parameters to a constructor do not, in and of themselves,
describe the object being returned, a static factory with a well-chosen name is
easier to use and the resulting client code easier to read. For example, the

CHAPTER 2 CREATING AND DESTROYING OBJECTS

constructor BigInteger(int, int, Random), which returns a BigInteger that is
probably prime, would have been better expressed as a static factory method
named BigInteger.probablePrime. (This method was added in Java 4.)

A class can have only a single constructor with a given signature. Program-
mers have been known to get around this restriction by providing two constructors
whose parameter lists differ only in the order of their parameter types. This is a
really bad idea. The user of such an API will never be able to remember which
constructor is which and will end up calling the wrong one by mistake. People
reading code that uses these constructors will not know what the code does
without referring to the class documentation.

Because they have names, static factory methods don’t share the restriction
discussed in the previous paragraph. In cases where a class seems to require
multiple constructors with the same signature, replace the constructors with static
factory methods and carefully chosen names to highlight their differences.

A second advantage of static factory methods is that, unlike constructors,
they are not required to create a new object each time they’re invoked. This
allows immutable classes (Item 17) to use preconstructed instances, or to cache
instances as they’re constructed, and dispense them repeatedly to avoid creating
unnecessary duplicate objects. The Boolean.valueOf(boolean) method illus-
trates this technique: it never creates an object. This technique is similar to the
Flyweight pattern [Gamma95]. It can greatly improve performance if equivalent
objects are requested often, especially if they are expensive to create.

The ability of static factory methods to return the same object from repeated
invocations allows classes to maintain strict control over what instances exist at
any time. Classes that do this are said to be instance-controlled. There are several
reasons to write instance-controlled classes. Instance control allows a class to guar-
antee that it is a singleton (Item 3) or noninstantiable (Item 4). Also, it allows an
immutable value class (Item 17) to make the guarantee that no two equal instances
exist: a.equals(b) if and only if a == b. This is the basis of the Flyweight pattern
[Gamma95]. Enum types (Item 34) provide this guarantee.

A third advantage of static factory methods is that, unlike constructors,
they can return an object of any subtype of their return type. This gives you
great flexibility in choosing the class of the returned object.

One application of this flexibility is that an API can return objects without
making their classes public. Hiding implementation classes in this fashion leads to
a very compact APIL. This technique lends itself to interface-based frameworks
(Item 20), where interfaces provide natural return types for static factory methods.

ITEM 1: CONSIDER STATIC FACTORY METHODS INSTEAD OF CONSTRUCTORS

Prior to Java 8, interfaces couldn’t have static methods. By convention, static
factory methods for an interface named Type were put in a noninstantiable com-
panion class (Item 4) named Types. For example, the Java Collections Framework
has forty-five utility implementations of its interfaces, providing unmodifiable
collections, synchronized collections, and the like. Nearly all of these implemen-
tations are exported via static factory methods in one noninstantiable class
(java.util.Collections). The classes of the returned objects are all nonpublic.

The Collections Framework API is much smaller than it would have been had
it exported forty-five separate public classes, one for each convenience implemen-
tation. It is not just the bulk of the API that is reduced but the conceptual weight:
the number and difficulty of the concepts that programmers must master in order
to use the APL. The programmer knows that the returned object has precisely the
API specified by its interface, so there is no need to read additional class docu-
mentation for the implementation class. Furthermore, using such a static factory
method requires the client to refer to the returned object by interface rather than
implementation class, which is generally good practice (Item 64).

As of Java 8, the restriction that interfaces cannot contain static methods was
eliminated, so there is typically little reason to provide a noninstantiable compan-
ion class for an interface. Many public static members that would have been at
home in such a class should instead be put in the interface itself. Note, however,
that it may still be necessary to put the bulk of the implementation code behind
these static methods in a separate package-private class. This is because Java 8
requires all static members of an interface to be public. Java 9 allows private static
methods, but static fields and static member classes are still required to be public.

A fourth advantage of static factories is that the class of the returned
object can vary from call to call as a function of the input parameters. Any sub-
type of the declared return type is permissible. The class of the returned object can
also vary from release to release.

The EnumSet class (Item 36) has no public constructors, only static factories.
In the OpenJDK implementation, they return an instance of one of two subclasses,
depending on the size of the underlying enum type: if it has sixty-four or fewer
elements, as most enum types do, the static factories return a RegularEnumSet
instance, which is backed by a single Tong; if the enum type has sixty-five or more
elements, the factories return a JumboEnumSet instance, backed by a Tong array.

The existence of these two implementation classes is invisible to clients. If
ReguTlarEnumSet ceased to offer performance advantages for small enum types, it
could be eliminated from a future release with no ill effects. Similarly, a future
release could add a third or fourth implementation of EnumSet if it proved beneficial

CHAPTER 2 CREATING AND DESTROYING OBJECTS

for performance. Clients neither know nor care about the class of the object they get
back from the factory; they care only that it is some subclass of EnumSet.

A fifth advantage of static factories is that the class of the returned object
need not exist when the class containing the method is written. Such flexible
static factory methods form the basis of service provider frameworks, like the Java
Database Connectivity API (JDBC). A service provider framework is a system in
which providers implement a service, and the system makes the implementations
available to clients, decoupling the clients from the implementations.

There are three essential components in a service provider framework: a
service interface, which represents an implementation; a provider registration
API, which providers use to register implementations; and a service access API,
which clients use to obtain instances of the service. The service access API may
allow clients to specify criteria for choosing an implementation. In the absence of
such criteria, the API returns an instance of a default implementation, or allows
the client to cycle through all available implementations. The service access API
is the flexible static factory that forms the basis of the service provider framework.

An optional fourth component of a service provider framework is a service
provider interface, which describes a factory object that produce instances of the
service interface. In the absence of a service provider interface, implementations
must be instantiated reflectively (Item 65). In the case of JDBC, Connection
plays the part of the service interface, DriverManager.registerDriver is the
provider registration API, DriverManager.getConnection is the service access
API, and Driver is the service provider interface.

There are many variants of the service provider framework pattern. For exam-
ple, the service access API can return a richer service interface to clients than the
one furnished by providers. This is the Bridge pattern [Gamma95]. Dependency
injection frameworks (Item 5) can be viewed as powerful service providers. Since
Java 6, the platform includes a general-purpose service provider framework,
java.util.ServicelLoader, so you needn’t, and generally shouldn’t, write your
own (Item 59). JDBC doesn’t use ServicelLoader, as the former predates the latter.

The main limitation of providing only static factory methods is that
classes without public or protected constructors cannot be subclassed. For
example, it is impossible to subclass any of the convenience implementation
classes in the Collections Framework. Arguably this can be a blessing in disguise
because it encourages programmers to use composition instead of inheritance
(Item 18), and is required for immutable types (Item 17).

A second shortcoming of static factory methods is that they are hard for
programmers to find. They do not stand out in API documentation in the way

ITEM 1: CONSIDER STATIC FACTORY METHODS INSTEAD OF CONSTRUCTORS

that constructors do, so it can be difficult to figure out how to instantiate a class
that provides static factory methods instead of constructors. The Javadoc tool may
someday draw attention to static factory methods. In the meantime, you can
reduce this problem by drawing attention to static factories in class or interface
documentation and by adhering to common naming conventions. Here are some
common names for static factory methods. This list is far from exhaustive:

from—A type-conversion method that takes a single parameter and returns a
corresponding instance of this type, for example:

Date d = Date.from(instant);

of—An aggregation method that takes multiple parameters and returns an in-
stance of this type that incorporates them, for example:

Set<Rank> faceCards = EnumSet.of (JACK, QUEEN, KINQ);
valueOf—A more verbose alternative to from and of, for example:
BigInteger prime = BigInteger.valueOf(Integer.MAX_VALUE);

instance or getInstance—Returns an instance that is described by its pa-
rameters (if any) but cannot be said to have the same value, for example:

StackWalker Tuke = StackWalker.getInstance(options);

create or newInstance—Like instance or getInstance, except that the
method guarantees that each call returns a new instance, for example:

Object newArray = Array.newInstance(classObject, arraylen);

getType—Like getInstance, but used if the factory method is in a different
class. Type is the type of object returned by the factory method, for example:

FileStore fs = Files.getFileStore(path);

new7ype—Like newInstance, but used if the factory method is in a different
class. Type is the type of object returned by the factory method, for example:

BufferedReader br = Files.newBufferedReader(path);
type—A concise alternative to get7ype and newType, for example:

List<CompTlaint> Titany = Collections.list(legacyLitany);

In summary, static factory methods and public constructors both have their

uses, and it pays to understand their relative merits. Often static factories are
preferable, so avoid the reflex to provide public constructors without first consid-
ering static factories.

